مطالعه اثرات شوری های مختلف بر فراوانی و مساحت سلول های کلرایددر آبشش بچه ماهی هامور معمولی (Epinephelus coioides)

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

مطالعه حاضر با هدف بررسی توانایی تنظیم اسمزی ماهی هامور بدلیل تحمل شوری های بالا و پایین ، توسط سلول های غنی از میتوکندری آبشش انجام شد . برای این منظورپس از انتقال ماهیان از آب با شوری ppt40 که متوسط شوری آب خلیج فارس می باشد به تیمارهای ppt10، ppt20 و ppt60 تغییر در تعداد و مساحت سلول های کلراید در بین تیمارهای مختلف طی دوره دو ماهه سازگاری مشاهده گردید. نمونه‌ برداری ازماهیان در8 مرحله یعنی درلحظه انتقال، ساعت 12، روز1، روز3، روز7، روز14، روز30 وروز 60 بصورت همزمان و 3 ماهی از هر تانک انجام گرفت. برای مشاهدات هیستومورفولوژی و ایمونوهیستوشیمی پس از تهیه نمونه های 5 میلی متری به مدت 24 ساعت در محلول بوئن فیکس شده سپس برای آبگیری نمونه ها از سری افزایشی اتانول استفاده گردید. پس از شفاف سازی توسط گزیلل در مرحله بعدی توسط پارافین مذاب پارافینه شدند. سپس از بلوک ها ی تهیه شده، برش هایی به ضخامت 5 میکرون تهیه و توسط رنگ هماتوکسیلین- ائوزین رنگ آمیزی شدند.مطالعه تغییرات در تعداد و مساحت سلول های کلراید در سطح 5%اطمینان در شوری های بالا و لب شور بسیار متفاوت بوده بطوریکه در ساعات اولیه انتقال تعداد و مساحت سلول های کلراید در آب های لب شور کمتر از آب با شوری بالا بود. امااز هفته دوم بعد از انتقال تا پایان دوره تعداد سلول های کلراید در تیمار ppt60 بیشتر از تیمار کنترل بوده و از روز هفتم تا پایان دوره مساحت سلول های کلراید در این شوری بیشتر از تیمار کنترل بود. با به توانایی بالای این ماهی در سازگاری و پاسخ به شوری‌های متفاوت محیط که با تغییرات بافت شناختی آبشش همراه می باشد می تواند مدل مناسبی برای بررسی مکانیسم‌های تنظیم‌اسمزی در شوری‌های متفاوت ‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of different salinity on number and area of chloride cells in gill of juvenile grouper (Epinephelus coioides)

نویسندگان [English]

  • M. R. Pourkhadje
  • R. Abdi
  • H. Zolgharnein
  • H. Hoseinzade Sahaf
  • H. Morovvati
چکیده [English]

The purpose of this study was to evaluate the ability of osmoregulation by mitochondria-rich cells in grouper fish with high tolerance of salinity variation levels. For this purpose, groupers were transferred from salt water with an average salinity of 40 ppt to the waters with 10 ppt, 20 ppt and 60 ppt rates of salinity. Changes in the number and area of chloride cells in the different treatments were observed during two months adjustment period. Experiment was carried out by sampling three fish from each tank within 8 phases at the moment of the transition, 12 hours, day 1, day 3, day 7, day 14, day 30 and day 60. Histomorphological and immunohistochemical observations were done after fixing in Bouin's solution for 24 hours. Samples were dehydrated with increasing series of ethanol, followed by paraffin, and cleared by xylene. Paraffin blocks were cut at 5 microns and stained by hematoxylin – eosin. Changes in the number and area of chloride cells in 5% level were very diffe.....

کلیدواژه‌ها [English]

  • Juvenile's grouper
  • Salinity
  • Gill
  • Chloride cell
قاضی لو، ا.، 1386. مطالعه تغییر سلولهای کلراید اپیتلیوم آبششی در پاسخ به افزایش شوری در ماهی زروک.پایان نامه ی کارشناسی ارشد رشته ی بیولوژی جانوران دریا، دانشگاه علوم وفنون دریائی خرمشهر.75 صفحه.
موحدی نیا، ع.، 1388. مکانیسم های تنظیم اسمزی در ماهی شانک؛ مطالعه ی اکولوژیکی، بافت شناختی و فراساختاری آبشش. پایان نامه ی دکتری رشته ی بیولوژی جانوران دریا، دانشگاه علوم وفنون دریائی خرمشهر. 145صفحه.
Alderdice D.F., 1988. Osmotic and ionic regulation in the teleost eggs and larvae.     In: Hoar A., and Randall D.J., (Eds.), Fish physiology. The physiology of developing fish. Eggs and larvae, vol.11, Academic
 
press, London, Pp. 163-251.
 
Boutet I., Long C.L, and Bonhomme F., 2006. A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Journal of Fish Biology, 57:593-599.
Evans D.H., 1997. The physiology of fishes. Boca Raton, CRC press, 519 P.
Fielder D.S., Allan G.L., Pepperall D., and Pankhurst P.M., 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture, 272:656-666.
Greco A.M., Gilmour K.M., Fenwick J.C., and Perry S.F., 1995. The effect of soft water acclimation on respiratory gas transfer in the rainbow trout. Journal of Experimental Biology, 198: 2557-2567.
Hiari N., Tagawa M., Kaneko T., Seikai T., and Tanaka M., 1999. Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicus .Zoological Science, 16:43-49.
Hirose S., Kaneko T., Naito N., and Takei Y., 2003. Molecular biology of major components of chloride cells. Journal of Comparative Biochemistry and Physiology Part B, 136: 593–620.
Imsland A.K., Gunnarsson S., Foss A., Stefansson S.O., 2003. Gill Na+/K+-ATPase activity, plasma chloride and osmolality in juvenile turbot Scophthalmus maximus reared at different temperatures and salinities. Aquaculture, 218: 671-683.
Katoh F., Hyodo S., and Kaneko T., 2004. Vacuolar-type proton pump in the basolateral plasma membrane energizes ion uptake in branchial mitochondria-rich cells of killifish adapted to a low ion environment. Journal of Experimental Biology, 206:793–803.
Laize-Carrion R., Gaurreirop M., Fuentes J., CanarioA.V.M. Martin del Rio M.P., and Mancera J.M., 2005. Branchial osmoregulatory response to salinity in the Gilthead Sea Bream, Sparus auratus. Journal of Experimental Zoology, 303:563-570.
Laurent P., and Perry S.F., 1990. Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell and Tissue Research, 259:429–442.
Lin, H.C., and Sung W.T., 2003. The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Physiology Biochemistry. Zoology, 76:215–228.
Lee K.M., Kaneko T., Katoh F., and Aida K., 2006. Prolactin gene expression and gill chloride cell activity in fugu Takifuguru bripes exposed to a hypo
 
osmotic environment. General and
Comparative Endocrinology, 149:285-.
Wilson J.M., Whiteley N.M., and Randal D.J., 2002. In regulatory changes in gill
 
Perry S.F., 1998. Relationships between branchial chloride cells and gas transfer in freshwater fish. Comparative Biochemistry and Physiology, 119:9-16.
Uchida K., Kaneko T., Yamauchi K., and Hirano T., 1996. Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. Journal of Experimental Zoology, 276: 193–200.
epithelia of coho salmon during seawater acclimation. Physiology Biochemistry Zoology, 75:237- 240.
Zydlewski G., and Mc Cormick S.D., 2001. Developmental and environmental regulation of chloride cells in Young American Shad, Alosa sapidissima. Journal of Experimental Zoology, 290:73-87.